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Abstract

We generalize Shimizu et al’s (2006)
ICA-based approach for discovering linear
non-Gaussian acyclic (LiNGAM) Structural
Equation Models (SEMs) from causally suffi-
cient, continuous-valued observational data.
By relaxing the assumption that the gener-
ating SEM’s graph is acyclic, we solve the
more general problem of linear non-Gaussian
(LiNG) SEM discovery. LiNG discovery al-
gorithms output the distribution equivalence
class of SEMs which, in the large sample
limit, represents the population distribution.
We apply a LiNG discovery algorithm to sim-
ulated data. Finally, we give sufficient con-
ditions under which only one of the SEMs in
the output class is “stable”.

1 Linear SEMs

Linear structural equation models (SEMs) are statisti-
cal causal models widely used in the natural and social
sciences (including econometrics, political science, so-
ciology, and biology) [1].

The variables in a linear SEM can be divided into two
sets, the error terms (typically unobserved), and the
substantive variables. For each substantive variable
xi, there is a linear equation with xi on the left-hand-
side, and the direct causes of xi plus the corresponding
error term on the right-hand-side.

Each SEM with jointly independent error terms can
be associated with a directed graph (abbreviated as
DG) that represents the causal structure of the model
and the form of the linear equations. The vertices of
the graph are the substantive variables, and there is a
directed edge from xi to xj just when the coefficient
of xi in the structural equation for xj is non-zero. 1

1Traditionally, SEMs with acyclic graphs are called “re-

1.1 The model, with an illustration

Let x be the random vector of substantive variables, e
be the vector of error terms, and B be the matrix of
linear coefficients for the substantive variables. Then
the following equation describes the linear SEM model:

x = Bx + e (1)

For example, consider the model defined by:

x1 = e1

x2 = 1.2x1 − 0.3x4 + e2

x3 = 2x2 + e3 (2)
x4 = −x3 + e4

x5 = 3x2 + e5

Note that the coefficient of each variable on the left-
hand-side of the equation is 1.

Fig. 1: Example 1

x can also be expressed directly as a linear combina-
tion of the error terms, as long as I − B is invertible.
Solving for x in Eq. 1 gives x = (I − B)−1e. If we
let A = (I − B)−1, then x = Ae. A is called the re-
duced form matrix (in the terminology of Independent

cursive”, and SEMs with cyclic graphs “non-recursive”[15].
We avoid this usage, and use “acyclic” or “cyclic” instead.



Components Analysis (see Section 3.1), it is called the
“mixing matrix”).

The distributions over the error terms in a SEM, to-
gether with the linear equations, entail a joint distribu-
tion over the substantive variables. This joint distribu-
tion can be interpreted in terms of physical processes,
as shown next.

1.2 Interpretating linear SEMs

These equations (contained in matrix equation (1))
can be given several different interpretations. Under
one class of interpretations, they are a set of equa-
tions satisfied by a set of variables x in equilibrium.
With some further assumptions, theB matrix in the si-
multaneous equations (a.k.a. “equilibrium equations”)
also represents the coefficients in a set of dynamical
equations describing a deterministic dynamical sys-
tem.

Fisher [5] gave one such interpretation as follows:
There is a relatively long observation period of length
1, and a much shorter “reaction” lag of length ∆θ =
1/n. The observed variable is the vector x̄[t], defined
as the average of x over the observation period starting
at t:

x̄[t] ≡ 1
n

n∑
k=1

x[t+ k∆θ] (3)

Suppose that the underlying dynamical equations are:

x[t+ k∆θ] = Bdynx[t+ (k − 1)∆θ] + e (4)

where e is constant over the observation period (but
may differ for different units in the population, e.g.
different observation periods).

Fisher showed that, in the limit as ∆θ approaches 0,
there is a Bequil = Bdyn such that:

x̄[t] = Bequilx̄[t] + e (5)

if and only if the modulus of each eigenvalue of Bdyn

is less than or equal to 1, and no eigenvalue is equal
to 1.

The assumptions underlying this model are fairly
strong, but commonly made in econometrics, and de-
fended by Fisher [5].

A simpler, but similar interpretation with similar con-
sequences is the one in which the observed value x is
the state in which the dynamical system converged,
rather than its average over an observation period.

1.2.1 Dealing with self-loops

The LiNG discovery algorithms presented in this paper
(described in Section 4) output a set of directed graphs

that do not contain any “self-loops” (edges from a ver-
tex to itself) 2, i.e. the B matrices output by our
LiNG discovery algorithms have all zeros in the diag-
onal. This is because it is impossible to determine the
values of the diagonal entries of the B matrix from
equilibrium data alone.

In the underlying dynamical equations, it may be that
for some index a, xa[t+ (k− 1)∆θ] affects xa[t+ k∆θ]
(i.e. ba,a 6= 0). Our goal is to recover the coefficients
that both represent the distribution of x̄ and correctly
predict the effects of manipulations. A manipulation of
a variable xi to a distribution P is modeled by replac-
ing the dynamical equation for xi by a new dynamical
equation xi[t+ k∆θ] = e′i, where e′i has distribution
P [10].

For these purposes, the following argument sketches
why the underdetermination of the diagonal of Bequil

by the equilibrium data is not a problem, as long as
ba,a 6= 1 in the underlying dynamical equations.

The equation for x̄a has the form:

x̄a = ba,ax̄a +
n∑

k 6=a,k=1

ba,kx̄k + ea (6)

If ba,a 6= 1, it is possible to rewrite this as:

x̄a − ba,ax̄a =
n∑

k 6=a,k=1

ba,kx̄k + ea (7)

x̄a =
1

1− ba,a

 n∑
k 6=a,k=1

ba,kx̄k + ea

 =
n∑

k=1

b′a,kx̄k+e′a

(8)

where b′a,a = 0. The modified system of equations con-
taining Equation 8 is represented by a graph that has
no self-loops, and has a different underlying dynamical
equation in which the coefficient for xa[t+ (k− 1)∆θ]
in the equation for xa[t+ k∆θ] is zero.

Note that in the second equation, the error term ea has
been rescaled by 1/(1− ba,a) to form a new error term
e′a and when (I − B)−1 is taken to form the reduced
form coefficients, the coefficients corresponding to ea

in the first set of equations will be multiplied by (1−
ba,a), and the two changes cancel each other out.

Now, if we consider the original dynamical system and
the one that results from setting the diagonal of B to
zero (as above), it is sometimes the case that one dy-
namical system satisfies the conditions for the dynam-
ical equations to approach the simultaneous equations

2Fisher argues that self-loops are not realistic, but these
arguments are not entirely convincing.



in the limit, while the other one does not, because the
magnitude of the coefficients in the equation for xa[t]
are different. If both forms satisfy Fisher’s conditions,
then the act of manipulating any variable to a fixed
distribution for all t makes the two sets of dynamical
equations have equivalent limiting simultaneous equa-
tions.

1.2.2 Self-loops with coefficient 1

Unfortunately, the case where ba,a = 1 cannot be han-
dled in the same way, since 1/(1 − ba,a) is infinite. If
ba,a = 1, then there may be no equivalent form with-
out a self-loop (or more precisely, the corresponding
equations without a self-loop may require setting the
variance of some error terms to zero). The case where
ba,a = 1 is a genuine problem that we do not currently
have a solution for. For the purposes of this paper, we
assume that no self-loops have a coefficient of 1.

As Dash has pointed out [4], there are cases where the
simultaneous equations have a different graph than the
underlying dynamical equations, and hence the graph
that represents the simultaneous equations cannot be
used to predict the effects of a manipulation of the
underlying dynamical system. In [4], Dash presents
two such examples. In both of them, in effect, Bdyn

has a 1 in the diagonal.

2 The problem and its history

2.1 The problem of DG causal discovery

Using the interpretations from 1.2, we can frame the
problem as follows: given samples of the equilibrium
distribution of a LiNG process whose observed vari-
ables form a causally sufficient set 3, find the set of
SEMs that describe this distribution, under the as-
sumption that it is non-empty.

2.2 Richardson’s Cyclic Causal Discovery
(CCD) Algorithm

While many algorithms have been suggested for
discovering (equivalence classes of) directed acyclic
graphs (DAGs) from data, for general linear directed
graphs (DGs) only one provably correct algorithm was
known (until now), namely Richardson’s Cyclic Causal
Discovery (CCD) algorithm.

CCD outputs a “partial ancestral graph” (PAG) that
represents both a set of directed graphs that entail the
same set of zero partial correlations for all values of

3A set V of variables is causally sufficient for a popula-
tion if and only if in the population every common direct
cause of any two or more variables in V is in V . (For
subtleties regarding this definition, see [13]).

the linear coefficients, and features common to those
directed graphs (such as ancestor relations). The algo-
rithm performs a series of statistical tests of zero par-
tial correlations to construct the PAG. The set of zero
partial correlations that is entailed by a linear SEM
with uncorrelated errors depends only upon the linear
coefficients, and not upon the distribution of the error
terms. Under some assumptions4, in the large sample
limit, CCD outputs a PAG that represents the true
graph.

There are a number of limitations to this algorithm.
First, the set of DGs contained in a PAG can be large,
and while they all entail the same zero partial corre-
lations (viz., those judged to hold in the population),
they need not entail the same joint distribution or even
the same covariances. Hence in some cases, the set rep-
resented by the PAG will include cyclic graphs that do
not fit the data well. Therefore, even assuming that
the errors are all Gaussian, it is possible to reduce the
size of the set of graphs output by CCD, although in
practice this can be intractable. For details on the
algorithm, see [11].

3 Shimizu et al’s approach for
discovering LiNGAM SEMs

The “LiNGAM algorithm”[12], which uses Indepen-
dent Components Analysis (ICA), reliably discovers a
unique correct LiNGAM SEM, under the following as-
sumptions about the data: the structural equations
of the generating process are linear and can be rep-
resented by an acyclic graph; the error terms have
non-zero variance; the samples are independent and
identically distributed; no more than one error term
is Gaussian; and the error terms are jointly indepen-
dent.5

3.1 Independent Components Analysis (ICA)

Independent components analysis [3, 8] is a statisti-
cal technique used for estimating the mixing matrix
A in equations of the form x = Ae (e is often called
“sources” and written s), where x is observed and e
and A are not.

ICA algorithms find the invertible linear transforma-

4The assumptions are: the samples are independent and
identically distributed, no error term has zero variance, the
statistical tests for zero partial correlations are consistent,
linearity of the equations, the existence of a unique reduced
form, faithfulness (i.e. there are no zero partial correlations
in the population that are not entailed for all values of the
free parameters of the true graph), and that the error terms
are uncorrelated.

5The error terms are typically not jointly independent
if the set of variables is not causally sufficient.



tion W = A−1 of the data X that makes the error dis-
tributions corresponding to the implied samples E of
e maximally non-Gaussian (and thus, maximally inde-
pendent). The matrix A can be identified up to scaling
and permutation as long as the observed distribution
is a linear, invertible mixture of independent compo-
nents, at most one of which is Gaussian [3]. There are
computationally efficient algorithms for estimating A
[8].

3.2 The LiNGAM discovery algorithm

If we run an ICA algorithm on data generated by
a linear SEM, the matrix WICA obtained will be a
row-scaled, row-permuted version of I −Bequil, where
Bequil is the coefficient matrix of the true model (this
is a consequence of the derivation in Section 1.1). We
are now left with the problem of finding the proper
permutation and scale for the W matrix so that it
equals I −Bequil.

Fig. 2: After removing the edges whose coefficients are
statistically indistinguishable from zero: (a) the raw WICA

matrix output by ICA on a SEM whose graph is x2 →
x1 ← x3 (b) the corresponding W̃ matrix, obtained by
permuting the error terms in WICA

Since the order of the error terms given by ICA is ar-
bitrary, the algorithm needs to correctly match each
error term ei to its respective substantive variable xi.
This means finding the correct permutation of the rows
of WICA. We know that the row-permutation of WICA

corresponding to the correct model cannot have a zero
in the diagonal (we call such permutations “inadmis-
sible”) because it is a row-scaled version of I −Bequil,
and the diagonal of Bequil is zero.

Since, by assumption, the data was generated by a
DAG, there is exactly one row-permutation of WICA

that is admissible [12]. To visualize this, this con-
straint says that there is exactly one way to reorder
the error terms so that every ei is the target of a ver-
tical arrow.6

In this example, swapping the first and second error
terms is the only permutation that produces an admis-

6Another consequence of acyclicity is that there will be
no right-pointing arrows in this representation, provided
that the xs are topologically sorted w.r.t. the DAG.

sible matrix, as seen in Fig. 2(b).

After the algorithm finds the correct permutation, it
finds the correct scaling, i.e. “normalizing” W by di-
viding each row by its diagonal element, so that the
diagonal of the output matrix is all 1s (i.e. the coef-
ficient of each error term is 1, as specified in Section
1).

Bringing it all together, the algorithm computes B by
using B = I −W ′, where W ′ = normalize(W̃ ), W̃ =
RowPermute(WICA) and WICA = ICA(X).

Besides the fact that it determines the direction of ev-
ery causal arrow, another advantage of LiNGAM over
conditional-independence-based methods [13] is that
the correctness of the algorithm does not require the
faithfulness assumption.

For more details on the LiNGAM approach, see [12].

4 Discovering LiNG SEMs

The assumptions of the family of LiNG discovery algo-
rithms described below (abbreviated as “LiNG-D”) are
the same as the LiNGAM assumptions, replacing the
assumption that the SEM is acyclic with the weaker
assumption that the diagonal of Bdyn contains no 1s.
In this more general case, as in the acyclic case, can-
didate models are generated by finding all admissi-
ble matches of the error terms (ei’s) to the observed
variables (xi’s). In other words, each candidate corre-
sponds to a row-permutation of the WICA matrix that
has a zeroless diagonal.

As in LiNGAM, the output is the set of admissible
models. In LiNGAM, this set is guaranteed to contain
a single model, thanks to the acyclicity assumption.
If the true model has cycles, however, more than one
model will be admissible.

The remainder of this section addresses the problem
of finding the admissible models, given that ICA has
finite data to work with.

4.1 Prune and solve Constrained n-Rooks

These algorithms generate candidate models by test-
ing which entries of WICA are zero (i.e. pruning),
and finding all admissible permutations based on that
(i.e. solving Constrained n-Rooks, see Section 4.1.2).
We call an algorithm “local” if, for each entry wi,j of
WICA, it makes a decision about whether wi,j is zero
using only wi,j .

4.1.1 Deciding which entries are zero

There are several methods for deciding which entries
of WICA to set to zero:



• Thresholding: the simplest method for estimat-
ing which entries of WICA are zero is to sim-
ply choose a threshold value, and set every entry
of WICA smaller than the threshold (in absolute
value) to zero. This method fails to account for
the fact that different coefficients may have differ-
ent spreads, and will miss all coefficients smaller
than the threshold.

• Test the non-zero hypothesis by bootstrap
sampling: another method for estimating which
entries of WICA are actually zero is to do boot-
strap sampling. Bootstrap samples are created
by resampling with replacement from the original
data. Then ICA is run on each bootstrap sam-
ple, and each coefficient wi,j is calculated for each
bootstrap sample. This leads to a real-valued dis-
tribution for each coefficient.7 Then, for each one,
a non-parametric quantile test is performed in or-
der to decide whether 0 is an outlier. If it isn’t,
the coefficient is set to 0 (i.e. the corresponding
edge is pruned.)8

• Use sparse ICA: Use an ICA algorithm that
returns a sparse (i.e. pre-pruned) mixture, such
as the one presented by Zhang and Chan [16].
Unlike the other methods above, this is not a local
algorithm.

4.1.2 Constrained n-Rooks: the problem and
an algorithm

Once it is decided which entries are zero, the algorithm
searches for every row-permutation of WICA that has
a zeroless diagonal. Each such row-permutation cor-
responds to a placement of n rooks onto the non-zero
entries on an n×n chessboard such that no two rooks
threaten each other. Then the rows are permuted so
that all the rooks end up on the diagonal, thus ensur-
ing that the diagonal has no zeros.

To solve this problem, we use a simple depth-first
search that prunes search paths that have nowhere to
place the next rook. In the worst case, every permu-
tation is admissible, and the search must take O(n!).

7One needs to be careful when doing this, since each run
of ICA may return a WICA in a different row-permutation.
This means that we first need to row-permute each boot-
strap WICA to match with the original WICA.

8One could object that, instead of a quantile test, the
correct procedure would be to simulate under the null hy-
pothesis (i.e.: edge is absent) using the estimated error
terms, and then compare the obtained distribution of the
ICA statistics with their distribution for the bootstrap.
However, this raises issues and complexities that are tan-
gential to the current paper.

4.2 A non-local algorithm

Local algorithms work under the assumption that the
estimates of the wi,j are independent of each other –
which is in general false when estimating with finite
samples. This motivates the use of non-local methods.

In the LiNGAM (acyclic) approach [12], a non-local
algorithm is presented for finding the single best row-
permutation of WICA, which minimizes a loss function
that heavily penalizes entries in the diagonal that are
close to zero (such as x→ |1/x|). This is written as a
linear assignment problem (i.e. finding the best match
between the eis and xis), which can be solved using
the Hungarian algorithm [9] or others.

For general LiNG discovery, however, algorithms that
find the best linear assignment do not suffice, since
there may be multiple admissible permutations.

One idea is to use a k-th best assignment algorithm
[2] (i.e. the k-th permutation with the least penalty
on the diagonal), for increasing k. With enough data,
all permutations corresponding to inadmissible models
will score poorly, and there should be a clear separa-
tion between admissible and inadmissible models.

The non-local method presented above, like the thresh-
olding method, fails to account for differences in spread
among estimates of the entries of WICA. It would be
straightforward to fix this by modifying the loss func-
tion to penalize diagonal entries for which the test fails
to reject the null hypothesis (as described in the part
about bootstrap sampling in Section 4.1.1), instead of
penalizing them for merely being close to zero.

4.3 Sample run

We generated 15000 sample points using the SEM in
Example 1 and error terms distributed according to a
symmetric Gaussian-squared distribution9.

Fig. 3 shows the output of the local thresholding al-
gorithm with the cut-off set to 0.05.

For the sake of reproducibility, our code with instruc-
tions is available from: www.phil.cmu.edu/~tetrad/
cd2008.html .

5 Theory

5.1 Notions of DG equivalence

There are a number of different senses in which the
directed graphs associated with SEMs can be “equiva-
lent” or “indistinguishable” given observational data,

9The distribution was created by sampling from the
standard Gaussian(0,1) and squaring it. If the value sam-
pled was negative, it was made negative again.



Fig. 3: The output of LiNG-D: Candidate #1 and Candi-
date #2

assuming linearity and no dependence between error
terms:

• DGs G1 and G2 are zero partial correlation equiv-
alent if and only if the set of zero partial correla-
tions entailed for all values of the free parameters
(non-zero linear coefficients, distribution of the er-
ror terms) of a linear SEM with DGG1 is the same
as the set of zero partial correlations entailed for
all values of the free parameters of a linear SEM
with G2. For linear models, this is the same as
d-separation equivalence. [13]

• DGs G1 and G2 are covariance equivalent if and
only if for every set of parameter values for the free
parameters of a linear SEM with DG G1, there is
a set of parameter values for the free parameters
of a linear SEM with DG G2 such that the two
SEMs entail the same covariance matrix over the
substantive variables, and vice-versa.

• DGs G1 and G2 are distribution equivalent if and
only if for every set of parameter values for the free
parameters of a linear SEM with DGG1, there is a
set of parameter values for the free parameters of
a linear SEM with DG G2 such that the two SEMs
entail the same distribution over the substantive
variables, and vice-versa. Do not confuse this with
the notion of distribution-entailment equivalence
between SEMs: two SEMs with fixed parameters
are distribution-entailment equivalent iff they en-
tail the same distribution.

It follows from well-known theorems about the Gaus-
sian case [13], and some trivial consequences of known
results about the non-Gaussian case [12], that the fol-
lowing relationships exist among the different senses of
equivalence for acyclic graphs: If all of the error terms
are assumed to be Gaussian, distribution equivalence
is equivalent to covariance equivalence, which in turn
is equivalent to d-separation equivalence. If not all of

the error terms are assumed to be Gaussian, then dis-
tribution equivalence entails (but is not entailed by)
covariance equivalence, which entails (but is not en-
tailed by) d-separation equivalence.

So for example, given Gaussian error terms, A ← B
and A→ B are zero partial correlation equivalent, co-
variance equivalent, and distribution equivalent. But
given non-Gaussian error terms, A ← B and A → B
are zero-partial-correlation equivalent and covariance
equivalent, but not distribution equivalent. So for
Gaussian errors and this pair of DGs, no algorithm
that relies only on observational data can reliably se-
lect a unique acyclic graph that fits the population dis-
tribution as the correct causal graph without making
further assumptions; but for all (or all except one) non-
Gaussian errors there will always be a unique acyclic
graph that fits the population distribution.

While there are theorems about the case of cyclic
graphs and Gaussian errors, we are not aware of any
such theorems about cyclic graphs with non-Gaussian
errors with respect to distribution equivalence. In
the case of cyclic graphs with all Gaussian errors,
distribution equivalence is equivalent to covariance
equivalence, which entails (but is not entailed by) d-
separation equivalence [14]. In the case of cyclic graphs
in which at most one error term is non-Gaussian, dis-
tribution equivalence entails (but is not entailed by)
covariance equivalence, which in turn entails (but is
not entailed by) d-separation equivalence. However,
given at most one Gaussian error term, the important
difference between acyclic graphs and cyclic graphs is
that no two different acyclic graphs are distribution
equivalent, but there are different cyclic graphs that
are distribution equivalent.

Hence, no algorithm that relies only on observational
data can reliably select a unique cyclic graph that fits
the data as the correct causal graph without mak-
ing further assumptions. For example, the two cyclic
graphs in Fig. 3 are distribution equivalent.

5.2 The output of LiNG-D is correct and as
fine as possible

Theorem 1 The output of LiNG-D is a set of SEMs
that comprise a distribution-entailment equivalence
class.

Proof: First, we show that any two SEMs in the out-
put of LiNG-D entail the same distribution.

The weight matrix output by ICA is determined only
up to scaling and row permutation. Intuitively, then,
permuting the error terms does not change the mix-
ture. Now, more formally:



Let M1 and M2 be candidate models output by LiNG-
D. Then W1 and W2 are row-permutations of WICA:
W1 = P1WICA, W2 = P2WICA

Likewise, for the error terms: E1 = P1E, E2 = P2E

Then the list of samples X implied by M1 is A1E1 =
(W1)−1E1 = (P1WICA)−1(P1E) = W−1

ICAP1
−1P1E =

W−1
ICAE.

By the same argument, the list of samples X implied
by M2 is also W−1

ICAE. Therefore, any two SEM mod-
els output by LiNG-D entail the same distribution.

Now, it remains to be shown that if LiNG-D outputs
one SEM that entails a distribution P , it outputs all
SEMs that entail P .

Suppose that there is a SEM S that represents the
same distribution as some T , which is output by
LiNG-D. Then the reduced-form coefficient matrices
for S and T , AS and AT , are the same up to column-
permutation and scaling. Hence, I − BS and I − BT

are also the same up to scaling and row-permutation
(by I − B = A−1). By the assumption that there are
no self-loops with coefficient 1, neither I − BT nor
I − BS has zeros on the diagonal. Since I − BT is a
scaled row-permutation of WICA that has no zeros on
the diagonal, so is I − BS . Thus S is also output by
LiNG-D. �

Theorem 2 If the simultaneous equations are linear
and can be represented by a directed graph; the error
terms have non-zero variance; the samples are inde-
pendently and identically distributed; no more than one
error term is Gaussian; and the error terms are jointly
independent, then in the large sample limit, LiNG-D
outputs all SEMs that entail the population distribu-
tion.

Proof: ICA gives pointwise consistent estimates of A
and W under the assumptions listed [3]. This entails
that there are pointwise consistent tests of whether an
entry in the W matrix is zero, and hence (by defini-
tion) in the large sample limit, the limit of both type I
and type II errors of tests of zero coefficients are zero.
Given the correct zeroes in the W matrix, the output
of the local version of the LiNG-D algorithm is correct
in the sense that the simultaneous equation describes
the population distribution. �

In general, each candidate model B′ = I − W ′ has
the structure of a row-permutation of WICA. The
structures can be generated by analyzing what hap-
pens when we permute the rows of W ′. Remember
that edges in B′ (and thus W ′) are read column-to-
row. Thus, row-permutations of W ′ change the posi-
tions of the arrow-heads (targets), but not the arrow-

tails (sources). Richardson proved that the operation
of reversing a cycle preserves the set of entailed zero
partial correlations, but did not consider distribution
equivalence [11].

5.3 Adding the assumption of stability

In dynamical systems, “stable” models are ones in
which the effects of one-time noise dissipate. For ex-
ample, a model that has a single cycle whose cycle-
product (product of coefficients of edges in the cy-
cle) is ≥ 1 is unstable, while one that has a single
cycle whose cycle-product is between -1 and 1 is sta-
ble. On the other hand, if a positive feedback loop of
cycle-product 2 is counteracted by a negative loop with
cycle-product −1.5, then the model is stable, because
the effective cycle-product is 0.5.

A general way to express stability is lim
t→∞

Bt = 0,
which is mathematically equivalent to: for all eigen-
values e of B, |e| < 1, in which |z| means the modulus
of z. This eigenvalues criterion is easy to compute.

Given only the coefficients between different variables,
it is impossible to measure the stability of a SEM with-
out assuming something about the self-loops. There-
fore, in this section, it is assumed that the true model
has no self-loops.

It is often the case that many of the SEMs output
by LiNG-D are unstable. Since in many situations,
the variables are assumed to be in equilibrium, we are
often allowed to rule out unstable models.

In the remainder of this section, we will prove that if
the SEM generating the population distribution has a
graph in which the cycles are disjoint, then among the
candidate SEMs output by LiNG-D, at most one will
be stable.

Theorem 3 SEMs in the form of a simple cycle with
a cycle-product π such that |π| ≥ 1 are unstable.

Proof: Let k be the length of the cycle. Then Bk =
πI. Then for all integers i, Bik = πiI. So if |π| ≥ 1,
the entries of Bik do not get smaller than the entries
of B as i increases. Thus, Bt will not converge to 0 as
t→∞. �

Corollary 1: For SEMs in the form of a simple cycle,
having a cycle-product ≥ 1 is equivalent to having an
eigenvalue ≥ 1 (in modulus), which is equivalent to
being unstable.

Theorem 4 Suppose that there is a SEM M with dis-
joint cycles with coefficient matrix B and graph G that
entails a distribution Q, and a SEM M0 6= M with
graph G0, coefficient matrix B0, which is an admis-
sible permutation of M and also entails Q. Then G0



also contains disjoint cycles, at least one of which is a
reversal of a cycle C in G, whose cycle-product is the
inverse of the cycle-product of C.

Proof: Due to space limitations, the proof is just
sketched here. Every permutation can be represented
as a product of disjoint cyclic subpermutations of the
form a → b → . . .m → n → a, where a → b
means a gets mapped onto b. (Some cyclic subper-
mutations may be trivial, i.e. contain a single ob-
ject mapped onto itself). Hence it suffices to prove
the theorem for a single admissible cyclic row per-
mutation of B. It can be shown that if a cyclic
row permutation of B, a → b → . . .m → n → a
is admissible, then G contains the cycle C equal to
a← b← . . .m← n← a, and G0 contains the reversed
cycle C equal to a → b → . . .m → n → a. Moreover,
if G0 contains two cycles that touch, so does G.

Consider BC , the submatrix of B that contains the
coefficients of the edges in cycle C.

BC =



0 . . . 0 bk,1

b1,2 0 . . . 0

0 b2,3
. . . 0

0 0
. . . 0


Note that the cycle-product πC = bk,1

∏k−1
i=0 bi,i+1.

WC = I −BC .

The “reversal” is the row-permutation in which the
first row gets “rotated” into the bottom:

RowPermute(WC) =



−b1,2 1 . . . 0

0 −b2,3
. . . 0

0 0
. . . 1

1 0 . . . −bk,1


Normalizing the diagonal to be all 1s, we get WC′ .
Computing BC′ = I−WC′ , one can see that the cycle-
product πC′ = 1

bk,1

∏k−1
i=0

1
bi,i+1

= 1/πC . �

We will now show that for SEMs in which the cycles are
disjoint, their stability only depends on the stability of
the cycles.

Theorem 5 A SEM in which the cycles are disjoint
is stable if and only if it has no unstable cycles.

Proof: Let be G be a SEM whose cycles are disjoint.
Then BG can be written as a block-triangular matrix
where each diagonal block is a cycle. The set of eigen-
values of a block-triangular matrix is the union of the
sets of eigenvalues of the blocks in the diagonal (in this

case, the eigenvalues of the cycles). Suppose a cycle
of G is unstable. Then it has an eigenvalue ≥ 1 (in
modulus). But since this is also an eigenvalue of BG,
it follows that G is unstable. The other direction goes
similarly. �

Theorem 6 If the true SEM is stable and has a graph
in which the cycles are disjoint, then no other SEMs
in the output of LiNG-D will be stable.

Proof: Suppose the true SEM is stable and has a
graph in which the cycles are disjoint. Call it G. Since,
by Theorem 2, the output of LiNG-D are the admis-
sible distribution-entailment equivalent alternatives to
the true SEM, it suffices to show that all other admis-
sible candidates are unstable.

By Theorem 5, all cycles in G are stable. Let H be
an admissible alternative to G, such that H 6= G. By
Theorem 4, H will have at least one cycle C reversed
relative to G and this reversed cycle will have a cycle
product that is the inverse of the cycle product of C.
By Corollary 1, the reversed cycle is not stable. Thus,
by Theorem 5, H is unstable.

Therefore, the only stable admissible alternative to G
is G itself. �

It follows that if the true model’s cycles are disjoint,
then under the assumption that the true model is sta-
ble, we can fully identify it using a LiNG discovery al-
gorithm (at most one SEM in the output of the LiNG
discovery algorithm will be stable).

For example, consider the two candidate models shown
in Fig. 3. By assuming that the true model is stable,
one would select candidate #2. Since our simulation
used a stable model, this is indeed the correct answer
(see Fig. 1).

In general, however, there may be multiple stable mod-
els, and one cannot reliably select the correct one.
When the cycles are not disjoint, it is easy to find ex-
amples for which there are multiple stable candidates.

The condition of disjoint cycles is sufficient, but not
necessary: it is easy to come up with SEMs where
we have exactly one stable SEM in the distribution-
entailment equivalence class, despite intersecting cy-
cles.

6 Discussion

We have presented Shimizu’s approach for discovering
LiNGAM SEMs, and generalized it to a method that
discovers general LiNG SEMs. This improves upon the
state-of-the-art on cyclic linear SEM discovery by out-
putting only the distribution-entailment equivalence
class of SEMs, instead of the entire d-separation equiv-



alence class; and by relaxing the faithfulness assump-
tion. We have also shown that stability can be a pow-
erful constraint, sometimes narrowing the candidates
to a single SEM.

There are a number of questions that remain open for
future research:

• The LiNG-D algorithm generates all admissible
permutations. The worst-case time-complexity of
n-Rooks is high, but can we do better than depth-
first search for random instances? Is there an al-
gorithm to efficiently search for the stable models,
without going through all candidates? In the case
where the cycles are disjoint, it is possible to just
find the correct permutation for each cycle inde-
pendently, but no such trick is known in general.

• How can prior information be incorporated into
the algorithm?

• How can the algorithm be modified to allow the
assumption of causal sufficiency to be relaxed?
For the acyclic case, see [7].

• How can the algorithm be modified to allow for
mixtures of non-Gaussian and Gaussian (or al-
most Gaussian) error terms? Hoyer et al [6] ad-
dress this problem for the acyclic case.

• How could we integrate this method into main-
stream dynamical systems research? Can the al-
gorithm handle noisy dynamics and noisy obser-
vations? Could it be made to handle non-linear
dynamics? What about self-loops of coefficient 1?
How could one integrate this with methods that
use non-equilibrium time-series data?
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