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Abstract

It is well-known that the Independent Component Analysis (ICA) model is not
identifiable when more than one source is Gaussian (Comon 1993). In this note,
we show that the number of continuous degrees of freedom in the “identifiable
quotient space” of ICA is max(0, G — 1), where G is the number of Gaussians in
the sources.

However, since the source distributions are unknown, GG is unknown and needs to
be estimated. We frame this as a problem of “hyper-equatorial regression” (i.e.
find the hyper-great-circle that best fits the hyperspherical band), which is solved
by doing PCA and discarding components beyond the knee of the eigenspectrum.

We conclude by suggesting a simple modification of the FastICA algorithm that
only returns the identifiable components, by exiting as soon as no sufficiently non-
Gaussian component can be found. This is more efficient than the first method
because it avoids the bootstrap and clustering steps.

1 Independent Component Analysis (ICA)

The Noise-Free Independent Component Analysis [1, 2] is the following statistical model:
X = AS (or in Einstein notation X, = a? Six)
Sjr ~Qj,iid fork=1,.., K

In other words, for each source j, we get a sample of K i.i.d. observations from distribution ;. We
may call the sample S; the “realized source”. X is observed (“mixtures”), and the S; are assumed
to be independent random variables with zero mean and unit variance (“‘sources”).

The parameter of interest is the mixing matrix A. The distributions (); are considered nuisance
parameters.

It is well-known that A can be identified up to column-sign (because simultaneously flipping Q) ;
and negating the jth column of A doesn’t change the distribution of X') and row-permutations (be-
cause the (); don’t have any specified order), as long as A is non-singular and at most one of the
distributions in S; is Gaussian [1].

This note is concerned with another type of unidentifiability: the one that results from more than
one source being Gaussian. In this case, rather than a discrete set of mixing matrices, there is now a
continuous subspace of mixing matrices that result in the same observed joint distribution.

The equivalence relation yields a partition of the parameter space, i.e. a set of observationally-
equivalent subspaces; this set of subspaces is called the “identifiable quotient space” or the “identi-
fiable parameter”.



If we have 2 Gaussian sources out of a large number of sources, ICA is far from useless: rather, all
but these 2 components can be identified. Each member of the identifiable quotient space only has
one degree of freedom (i.e. we have only lost 1 degree of freedom).

Below, we illustrate the behavior of the ICA statistic on an example where I = J = 3, that is,
3 sources and 3 mixtures. We resample about 500 times and plot the directions of the resulting
components (columns of A) on the unit sphere:

(a) G = 1: 6 significant clusters (b) G = 2: 2 compact clusters (c) G = 3: no significant clusters
are observed and 1 ring-shaped cluster

Figure 1: As we can see, the rank is k — 1

As we can see, in Fig (a), all 3 components have a clear direction, through their orientation can flip.
This results in 2] = 6 clusters. Fig (b) has one component like that, and two others that define a
plane in which any pair of basis vectors fit the data equally well. In Figure (c) all components are
Gaussian, so all vector triples are roughly equivalent.

What this suggests about ICA is that in general, rather than estimate single components, our goal
should be to estimate subspaces.

The observational equivalence class that contains the truth is the set of mixing matrices that can be
obtained by applying an invertible linear transformation of the columns of A corresponding to the
Gaussian components while maintaining the remaining columns fixed.
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Figure 2: The tight clusters shown at the top right and bottom left of the figure indicate that the first
component is stable. The red line traces the great circle that represents the best-fitting plane for the
points around the band (by squared Euclidean distance), found using PCA.

Having run a clustering procedure to eliminate the tight clusters corresponding to the non-Gaussian
components, we use PCA to find the k-plane around which the points on the ring lie. This gives us
the Gaussian subspace.

The output of this modified ICA is now a pair: (a) a set of non-Gaussian directions (b) a k-plane
representing the subspace defined by the Gaussian sources.
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