
Regularization and clustering of neuron spike data with the
Group Lasso

I neuron spikes

I spikes as binary data

I stimulus is continuous

I logistic regression



Logistic Model

I model: neuron i at time t spikes with probability
pit = σ(βiXt)

I for each neuron we can write down the likelihood and
maximize it

I however, much of this data is pretty bad: many neurons had
zero spikes!

I IDEA: borrow information from neighboring neurons



Regularization - L2
2, ridge penalty

I the typical setting: only one coefficient vector β, penalized by
its squared norm L22.

I IDEA: borrow information between neighboring neurons

I write down the total log-likelihood, and put a penalty on the
squared distance between estimates for neighboring neurons.
Given a graph G :

e.g. obj(β) = logP(y |X , β)− λ
∑

(i ,j)∈G

‖βi − βj‖22

This pushes estimates towards each other.

I The ridge penalty is often called L2-regularization. This name
is misleading.



Regularization - Lasso and Group Lasso

I IDEA: borrow information between neighboring neurons

I the typical setting: Lasso penalty leads to sparse MAP
estimates, i.e. some subset of the parameters will tend to be
exactly zero

I here: some of the estimated parameters will be identical

I but it makes more sense to encourage the entire coefficient
vectors to be identical

I Group Lasso (Yuan and Lin, 2006): encourages groups of
parameters to go to 0 together

I groups of parameters ≡ vector-valued parameters

obj(β) = logP(y |X , β)− λ
∑

(i ,j) ‖βi − βj‖2



Lassoing the estimates together

I note how for every value of λ, we have a clustering of the
neurons: the larger the λ, the fewer clusters.



Interpretation

We can always interpret penalized log-likelihood procedures as
MAP inference with a prior that is proportional to the exponential
of the penalty.

I e.g. Lasso corresponds to independent double-exponential
(a.k.a. Laplace) prior on the coefficient vector.

However, when we have these penalty terms involving differences
between βi s, these priors will not be independent.



Optimization

There is no closed-form solution to this optimization problem, so
optimization is done by gradient ascent.

I Objective is convex but not automatically efficient

I Simple gradient ascent suffers from zig-zagging

I Interior-point method: start with a smoothed objective and
gradually sharpen it
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