Regularization and clustering of neuron spike data with the
Group Lasso

> neuron spikes

> spikes as binary data
» stimulus is continuous
> logistic regression
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Logistic Model

» model: neuron i at time t spikes with probability
pit = o(BiXt)

» for each neuron we can write down the likelihood and
maximize it

» however, much of this data is pretty bad: many neurons had
zero spikes!

» IDEA: borrow information from neighboring neurons



Regularization - £3, ridge penalty

» the typical setting: only one coefficient vector 3, penalized by
its squared norm L3

» IDEA: borrow information between neighboring neurons

» write down the total log-likelihood, and put a penalty on the
squared distance between estimates for neighboring neurons.
Given a graph G:

e.g. obj(B) =logP(y|X,8) =X > 18— Bill3

(if)eG

This pushes estimates towards each other.

> The ridge penalty is often called L»-regularization. This name
is misleading.



Regularization - Lasso and Group Lasso

» IDEA: borrow information between neighboring neurons

> the typical setting: Lasso penalty leads to sparse MAP
estimates, i.e. some subset of the parameters will tend to be
exactly zero

» here: some of the estimated parameters will be identical

» but it makes more sense to encourage the entire coefficient
vectors to be identical

» Group Lasso (Yuan and Lin, 2006): encourages groups of
parameters to go to 0 together

> groups of parameters = vector-valued parameters

obj(B) = logP(y|X, B) = A3 j) 18 — Bjll2



Lassoing the estimates together
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> note how for every value of A\, we have a clustering of the
neurons: the larger the A, the fewer clusters.



Interpretation

We can always interpret penalized log-likelihood procedures as
MAP inference with a prior that is proportional to the exponential
of the penalty.

» e.g. Lasso corresponds to independent double-exponential
(a.k.a. Laplace) prior on the coefficient vector.

However, when we have these penalty terms involving differences
between (s, these priors will not be independent.



Optimization

There is no closed-form solution to this optimization problem, so
optimization is done by gradient ascent.

» Objective is convex but not automatically efficient

» Simple gradient ascent suffers from zig-zagging

> Interior-point method: start with a smoothed objective and
gradually sharpen it



Thanks to Liam Paninski and Tim Teravainen for discussions.



