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Abstract

We implement a spatial image model based on Ziniel and Schniter’s “Dynamic
Compressive Sensing of Time-Varying Signals via Approximate Message Pass-
ing”, in which the image is filtered through an unknown series of binary masks,
blurred, and finally observed as Poisson counts at each pixel. We initialize L1-
regularized Poisson regression, with (a) an interior-point method, and (b) the
FISTA algorithm. The next step is to infer the masks, via Belief Propagation.

1 Introduction

The diffraction limit is a fundamental property of a lens: it gives an upper bound on the resolution
of the images that can be obtained. It is proportional to the wavelength of the light, and to the
baseline noise level. “Super-resolution” refers to ways of defeating this limit, using techniques
such as masking: a mask blocks selected pixels of the image, and by taking multiple pictures with
complementary masks, one may put them together to achieve super-resolution.

With telescopes, one can carefully design a set of masks; however, with microscopes, the masks
would need to be tiny, and the imager may not be able to implement masks at this level of precision.
One workaround is to introduce random masks, such as gas particles that move around, randomly
blocking different sets of pixels. This is not going to be quite as informative as if we could have
designed the masks, and the analysis is going to be harder, but it still allows us to achieve super-
resolution.
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2 The model

• I is the original images, encoded as a vector of U2 pixels. This is what we are ultimately
interested in.

• St+1
i ∼ Q(Sti ), i.e. the masks follow a two-state Markov chain with state-space equal to
{0, 1}, and in particular each pixel evolves independently.

• Let Xt = I�St, or in other words: Xt
i = IiS

t
i i.e. Xt is the image after masking with St.

• Let Zt = AXt, where A is a Gaussian blur matrix, i.e. Zt is a blurred version of Xt.
• Y ti ∼ Poi(γZti ) for each pixel i. We can interpret Y ti as the number of photons observed

at pixel i and time t. γ can be interpreted as exposure time.
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3 Simulations

We simulate a 5x5 image, in which the Gaussian blur has a standard deviation equal to 0.5.
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Figure 1: A
At the bottom of the figure, on the left side, we see the quantiles from the Ridge estimates; on the
right, we see quantiles from the Lasso estimates.

Now, for each pixel, the Ridge estimate has a bimodal distribution: one bump near 0 for
times in which the mask is hiding the pixel (black dots), one bump near the true value for
times in which the mask is open (red dots). The value in the true image is shown as a red line.

0.0 0.2 0.4 0.6 0.8 1.0

0
6

# masked = 19  truth = 0

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
4

# masked = 9  truth = 0

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
4

# masked = 18  truth = 0

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
3

# masked = 15  truth = 0

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
3

# masked = 22  truth = 1

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
3

# masked = 20  truth = 0

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
6

# masked = 24  truth = 0

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

# masked = 18  truth = 0

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
4

# masked = 13  truth = 0

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

# masked = 15  truth = 1

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
4

# masked = 16  truth = 0

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
3

# masked = 18  truth = 0.5

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
3

# masked = 15  truth = 1

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
3

# masked = 19  truth = 1

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
4

# masked = 25  truth = 1

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
3

# masked = 19  truth = 0.8

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
3.
5

# masked = 16  truth = 1

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

# masked = 9  truth = 1

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
4

# masked = 20  truth = 1

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
3

# masked = 22  truth = 1

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

# masked = 18  truth = 1

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
3

# masked = 23  truth = 1

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
3.
5

# masked = 16  truth = 0.3

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
3

# masked = 9  truth = 0

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
4

# masked = 21  truth = 1

D
en
si
ty

3



4 Inference

4.1 General considerations

As a matter of identifiability, we can only expect to have information about pixels that become active
during the experiment, i.e. Sti = 1 for some t ∈ {1, ..., T}. This can fail if T is not large enough, or
if the Markov chain mixes too slowly.

4.2 Maximum Likelihood

The simplest approach to inference would be to maximize the marginal likelihood:
Î = argmaxI P (Y |I). However, this approach quickly becomes intractable because it involves in-
tegrating out S, which has dimension equal to U2T . Even exploiting the conditional independences,
this is too difficult to do directly.

4.3 Initialization

For each t, we can estimate Xt by only considering Y t, i.e. without smoothing it with the neigh-
boring Xt. If the chain mixes quickly enough, the Xt become approximately exchangeable, and
smoothing becomes unnecessary.

We use two objective functions:

• with a ridge penalty: X̂t = argminXt −logP (Y t|Xt) + λ ||Xt||22

• with a lasso penalty: X̃t = argminXt −logP (Y t|Xt) + λ ||Xt||1

The Lasso estimate tends to be sparse, and is more appropriate in settings where I tends to be sparse.

Having obtained these estimated “masked images” for each t, we could now try extract the upper
bump of the bimodal distribution, to initialize, or to estimate the image. Instead, we take a high
quantile of the bimodal distribution, with the hope that it will be on the upper bump.
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5 Optimization

Both objectives, ridge and Lasso, are convex. The ridge objective is differentiable, and thus easy to
optimize. Therefore this section focuses on the Lasso problem.

5.1 Interior-point method

We smoothe the non-differentiability of the Lasso penalty with a quadratic in the range [−ε, ε], and
iteratively shrink ε, initializing with the optimum for the previous value of ε.

The 25 runs of the interior point method take 26 seconds.

5.2 ISTA

Since we desire a faster algorithm, we decided to look into ISTA and FISTA (Beck and Taboulle,
2009). The ISTA algorithm is based on iteratively optimizing a quadratic approximation of the
objective around the current point xk.

QL(x, y) = f(y)+ < x− y,∇f(y) > + L
2 ||x− y||

2
2

The iteration is: xk = pL(xk−1)

In the case of the Lasso penalty, Beck and Taboulle derive an analytic form for pL.

pL(y) = argminx{QL(x, y)}
xk = Tλtk(xk−1 − tk∇f(xk−1)), where Tα is the thresholding operator, a continuous piecewise
linear function that maps small values to 0.

FISTA modifies ISTA by keeping track of two variables, x and y, and accelerating the optimization
by centering the quadratic around an extrapolated step.

Using λ = 3, and step size of 0.001, the 25 runs of ISTA with analytical updates take 4.3 seconds,
and produce the following figure.
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5.3 Future work

The positivity constraint for the Poisson parameter is a linear constraint, since the blur can be repre-
sented by a matrix. However, the constraint that all pixels in Xt be positive is non-linear, and base
R does not support optimization with non-linear constraints.
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